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SUMMARY

Large scale unsteady motions in many practical engineering �ows play a very important role and it
is very unlikely that these unsteady �ow features can be captured within the framework of Reynolds
averaged Navier–Stokes approach. Large-eddy simulation (LES) has become, arguably, the only practical
numerical tool for predicting those �ows more accurately since it is still not realistic to apply DNS to
practical engineering �ows with the current and near future available computing power.
Numerical methods for the LES of turbulent �ows in complex geometry have been developed and

applied to predict practical engineering �ows successfully. The method is based on body-�tted curvi-
linear co-ordinates with the contravariant velocity components of the general Navier–Stokes equations
discretized on a staggered orthogonal mesh. For incompressible �ow simulations the main source of
computational expense is due to the solution of a Poisson equation for pressure. This is especially true
for �ows in complex geometry. A multigrid 3D pressure solver is developed to speed up the solution.
In addition, the Poisson equation for pressure takes a simpler form with no cross-derivatives when or-
thogonal mesh is used and hence resulting in increased convergence rate and producing more accurate
solutions. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-eddy simulation, con�ned at the early stage to very simple con�gurations such as
isotropic homogeneous turbulence, plane channel �ows and �at plate boundary layer tran-
sition [1–3], has been undergoing a blooming development and matured to the point where
application to complex �ows is desirable. It has been applied more and more to study the
physical phenomena that occur in engineering-like applications such as separated �ows [4, 5],
rotating pipe �ows [6, 7], �ow over blunt bodies [8] and mixing and swirling jet �ows [9].
However, most of these LES works have been performed in relatively simple geometry. LES
of realistic engineering �ows in complex geometry is scarce and still a big challenge because
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it requires reliable, robust, accurate, e�cient numerical methods to solve the 3D governing
equations in general curvilinear co-ordinates in addition to sub-grid scale modelling.
This paper describes the development of a �nite volume code for performing LES of

practical engineering �ows in complex geometry and discusses related numerical issues such as
�ltering, choice of velocity components: Cartesian or contravariant, staggered or non-staggered
grids. Sub-grid scale modelling will not be addressed in this paper and can be found elsewhere
[10].
The code has been applied to practical complicated engineering �ows. The simulated results

compare well with the available experimental data which demonstrates that the numerical
methods are reliable and robust.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

To develop numerical methods for the incompressible Navier–Stokes equations in general
curvilinear co-ordinates the following choices have �rst to be made: (i) velocity components:
Cartesian, contravariant or other; (ii) a staggered or non-staggered grid. These two issues are
not totally independent and will be brie�y discussed here.
Discretization on a non-staggered grid in general co-ordinates are less complicated than on a

staggered grid. However, it is established from RANS calculation that with non-
staggered grids arti�cial stabilizing terms (pressure smoothing) are required. It is not clear
how big the e�ects can be and what the best way is to treat ‘pressure smoothing’ in the case
of LES since so far little work has been reported to demonstrate this point. Staggered grids
easily lead to inherently stable and accurate discretization and have been widely used in the
LES community, especially due to the fact that conservative property can be achieved on a
staggered grid, for example with second-order central di�erencing [11]. Hence a staggered
grid is employed in the current study and numerical results for turbulent �ow in a 180◦ bend
duct will be compared with those obtained by a LES code using a collocated grid.
If contravariant velocity components are used, additional body force terms arise due to

grid line curvature. In these terms the so-called Christo�el symbols occur which involve
the second derivatives of the co-ordinate mapping so that inaccuracies are to be feared on
non-smooth grids. Many researchers prefer to use Cartesian velocity components to avoid
the Christo�el symbols for this reason, and for another reason of huge memory requirements
because there are so many of them (18 in three dimensions) and plus other geometric metrics,
transformation matrix. Some of them need to be stored at several positions of the staggered
mesh so that the memory requirement is huge. However, Cartesian velocity components do
not combine easily with staggered grids in general co-ordinates because the Cartesian velocity
components are not normal to co-ordinate lines. To avoid the excessive requirement of storage
space the transformation in the current study is restricted to x and y (2D) and in the third
dimension (z) the grid can be either translated or rotated by which many complicated practical
engineering geometries, especially in gas turbine engine, can be represented. This is a step
forward compared with the numerical methods developed by Yang and Voke [12] which can
only allow translation in the third dimension. In addition, orthogonal grid (in practice it is
very di�cult to generate the orthogonal grid everywhere but extreme care has been taken

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–18



NUMERICAL METHODS FOR LARGE-EDDY SIMULATION 3

to ensure that the grid in the present study is orthogonal or very close to orthogonal) is
employed in the current study so that the equations can be further simpli�ed, especially there
will be no cross-derivative terms in the Poisson equation for pressure which will speed up
the convergence and possibly increase the accuracy.
Details of the mathematical transformation of the governing equations can be found else-

where [13] and the governing equations of incompressible �ows may be written in following
form:

∇(i)[Vi] = 0 (1)

@
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where Vj are the contravariant velocity components. ∇(i) is the divergence operator and Hi(j)
is the co-ordinate variation terms, de�ned as
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in which hi=
√
gii is the scale factors and |h| is the product of the scale factors representing

the volume ratio between the co-ordinate systems. Note that x(i) is not a co-ordinate system
but a notational convenience and the curvilinear orthogonal system xi is related to x(i) as
follows:

x(i)= hixi (5)

In Equation (2), �e is the sum of molecular viscosity and the sub-grid eddy-viscosity which
is obtained through the Smagorinsky SGS model [14] with the van Driest Damping function
in the present study. The Smagorinsky constant is 0.1 for all the cases in the present study.
All the geometric quantities can be calculated from the input co-ordinates data of the cell-

vertices (grid nodes) once for all at the beginning. The process is brie�y described below.
As mentioned before that in the current study the 3D grids are generated by either trans-

lating or rotating the 2D (X; Y ) orthogonal curvilinear grids. Therefore all XY planes along Z
direction are identical (the co-ordinates in the Z direction is independent of the other two),
this leads to much fewer geometric quantities compared with fully 3D transform and the ge-
ometric quantities are only needed to be calculated on one XY plane. The non-zero Hi(j) in
the present study are H1(2), H2(1), H3(1) and H3(2) which can be computed numerically as
follows:

H1(2) =
�xj+1 −�xj
�xj+1=2�yj+1=2

(6)

H2(1) =
�yi+1 −�yi
�xi+1=2�yi+1=2

(7)
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H3(1) =
�ri+1 −�ri
�xi+1=2�ri+1=2

(8)

H3(2) =
�rj+1 −�rj
�yj+1=2�rj+1=2

(9)

where r in Equations (8) and (9) denotes radius when the third dimension is rotated. If the
third direction is translated, H3(1) and H3(2) will be zero.

2.2. Numerical methods

The philosophy of LES is to compute directly the large-scale energy-dominate structures
of turbulent motion while modelling only the remaining �ne-scale eddies which are usually
homogeneous and isotropic. The large-scale velocity components of the �ow �eld are de�ned
(separated from the small scales) by spatially �ltering the governing equations. There are two
school of thoughts with respect to �ltering. It is called ‘explicit �ltering’ if a �lter such as a
Gaussian one is applied to the equations. However, in many �nite-di�erence computations, this
�lter is actually implemented implicitly through the grid’s resolution and this is called ‘implicit
�ltering’. This can be regarded as imposing a top hat �lter and the local �lter width in this case
is equivalent to the local grid spacing. In explicit �ltering for homogeneous turbulent �ow the
�lter width can be kept constant along any spatial direction and the �ltering operation is of a
convolution type which has the convenient property that �ltering and di�erentiation operations
commute. For inhomogeneous �ows the �lter width should be a function of space because
the average size of turbulent eddies varies in space. However, when the �lter width varies
the commutation between �ltering and di�erentiation operations breaks down which leads to
the governing equations essentially intractable for numerical solution. Some progress has been
made in the development of nonuniform �lters [15]. In addition, in complex geometry the
governing equations in general co-ordinates are necessary which involves a complicated issue
whether to transform the equations �rst then �lter the equations in computational space or �lter
the equations �rst in physical space. It is argued by Jordan [16] that the recommended order-
of-operations is to transform the equation system �rst, then �lter the result. This sequence
logically conforms the �lter operation to the curvilinear �eld lines but requires representing
the coe�cient metrics as �lter quantities.
Since the �nite volume method with a staggered grid is used in the present study, and

considering the above arguments, the implicit �ltering approach is adopted here. The velocity
components at the corresponding grid points are interpreted as the volume average. Any small
scale (smaller than the mesh or control volume) motions are averaged out and have to be
accounted for by a subgrid-scale model. However, note that it is impossible in this case to
discuss the convergence properties (grid independent solution) of the LES equations because
with every mesh re�nement, more small scale eddies are resolved and strict convergence is
only achieved in the limit of direct numerical simulation.
The spatial discretization used in the present study is second-order central di�erencing.

While higher-order numerical schemes, generally speaking, are desirable and can be ap-
plied fairly easily in simple geometries, their use in complex con�gurations is rather dif-
�cult. In addition, it is essential that the numerical schemes for LES are both non-dissipative
and conservative (not only mass and momentum but also kinetic energy conserving). These
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NUMERICAL METHODS FOR LARGE-EDDY SIMULATION 5

requirements rule out the use of even higher-order upwind or upwind-biased schemes since
they still produce too much numerical dissipation [9]. On the other hand, it is di�cult, at
least for incompressible �ows, to construct high-order energy conserving schemes [17] and
this is one of the reasons why the second-order central di�erence scheme on a staggered mesh
is still so popular because it conserves global kinetic energy on uniform Cartesian meshes.
Although this energy conservation property has not been proven for non-uniform meshes it
is still likely that with increasing use of LES on body-�tted curvilinear grids for applications
to �ows of engineering interest in complex geometries the second-order central di�erencing
scheme is going to be widely used.
Numerical schemes with unstructured mesh are very appealing for LES of complex engi-

neering �ows and there are a few groups in the world which are working on this, following
the pioneering work by Jansen [18]. However, they appear to be too memory and/or CPU
intensive at present for the relatively large number of mesh points needed for turbulence
simulations in complex geometries.
With respect to time advancement, implicit schemes allow larger time steps to be used.

However, they are more expensive because at each time step non-linear equations have to
be solved. Furthermore, large time steps are unlikely to be used in LES in order to resolve
certain time scales for accurate simulations of turbulence. Hence, explicit schemes seems to
be more suitable for LES than implicit schemes and most researchers in LES use explicit
schemes, of which the Adams–Bashforth scheme is a popular and robust one and is used in
the present study. Since the time steps are usually small in LES so that it is not essential to
use much higher-order schemes either.
The Adams–Bashforth scheme used in the current study is presented brie�y as follows:

ûi − uni
�i

=
3
2
Hn
i − 1

2
Hn−1
i +

1
2
@pn

@xi
(10)

un+1 − ûi
�t

=−3
2
@pn+1

@xi
(11)

∇2pn+1 =
2
3�t

@ûj
@xj

(12)

where ûi is the intermediate velocity and Hi denotes the contribution of convective and di�u-
sive terms. Equation (10) is solved �rst to get the intermediate velocity ûi, then the Poisson
equation (12) for pressure derived by imposing the divergence free condition for the new
velocity �elds at n + 1 time-level is solved to obtain pressure, �nally the velocity �led at
n+ 1 time-level is obtained from Equation (11).

2.3. Multigrid Poisson solver

Since explicit scheme is used to solve the momentum equations, the e�cient solution of the
Poisson equation of pressure plays a vital role in the overall computation e�ciency of LES.
Typically, the solution of pressure equation consumes 70% of the total CPU time. Multigrid
method [19] is employed to speed up (for example, about 50% speed up has been achieved
for a 180◦ bend square duct �ow in the present study) the solution of the Poisson equation
for pressure in the present study.
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The logic of multigrid method lies in the fact that the iterative errors can be divided
into two parts: high-frequency ones and low-frequency ones. The high-frequency errors can
be removed more easily than the low-frequency ones through the common iterative method
like Gauss–Siedel iteration. If several grid levels are used, the low-frequency errors on the
�ne grid become the high-frequency errors on the coarse grid and hence be removed relatively
quickly.
A two-grid iterative method is as follows:

• On the �ne grid, perform iterations with a method that gives a smooth error.
• Compute the residual on the �ne grid.
• Restrict the residual to the coarse grid.
• Perform iterations of the correction equation on the coarse grid.
• Interpolate the correction to the �ne grid.
• Update the solution on the �ne grid.
• Repeat the entire procedure until the residual is reduced to the desired level.

2.4. Boundary conditions

The boundary conditions used are fairly standard and will be presented very brie�y here.
In LES specifying the in�ow boundary conditions accurately is very di�cult and will be
discussed more below.

2.4.1. In�ow condition. Unlike the RANS computations where the in�ow boundary conditions
can be simply speci�ed according to experimental data or other kind of information, for LES
at the in�ow planes, the values of three components of instantaneous velocity are required
at each time step which are almost impossible to be obtained from any experimental data.
For fully developed turbulent �ows, the in�ow conditions are usually speci�ed in three ways.
The �rst one is to specify the mean �ow plus random perturbation. This is the easiest way
but random disturbances are nothing like the real turbulence as they have no correlation
either in space nor in time and have usually a �at spectrum similar to that of the white
noise. Therefore, they decay rapidly and it takes certain distance downstream from the in�ow
boundary for a desired realistic turbulence to develop. However, in some cases the use of
random noise at the inlet does not develop turbulence at all. This method makes it almost
impossible to specify the in�ow boundaries conditions with any required turbulence quantities
such as shear stress or spectrum. The second method is to generate the instantaneous in�ow
velocity components in such a way that they are correlated and with required �rst, second
moments and power spectrum. This is an ideal way of generating in�ow boundary conditions
as realistic turbulence can be provided and it is much cheaper compared with the third one.
However, it is very di�cult to generate the in�ow velocity components with all the desired
turbulence properties. It is possible to generate in�ow turbulence with one or two properties
but as far as we know there are not any methods available which can be used to generate
in�ow turbulence with all the desired characteristics such as intensity, shear stresses, length
scales and power spectrum. Finally, one can use the so-called precursor simulation technique,
which is basically to perform another simulation and store the data as the input for the required
simulation. This can generate the most realistic turbulence information but the penalty is that
it is too expensive.
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NUMERICAL METHODS FOR LARGE-EDDY SIMULATION 7

2.4.2. Other boundary conditions. At outlet a convective boundary condition is employed.
In wall bounded �ows, the number of grid points required to resolve the boundary layer
increases dramatically with Reynolds number. This near-wall resolution requirement, in many
cases, could be the severest bottleneck in applying LES to �ows of practical interest. As it is
not absolutely necessary in many cases to resolve the wall layer some approximate boundary
conditions, i.e. wall functions, can be applied on the walls. It is more di�cult to apply wall
functions in LES than in RNAS calculation and in the current study the approach by Schumann
[20] is taken with slightly modi�cation on calculating the mean friction velocity or wall shear
stress. The mean wall shear stress in Schumann’s model in the case of channel �ow is equal
to the driving mean pressure gradient. This implies that the mean driving pressure gradient
should be known a priori which is quite restrictive. The mean wall shear stress in the current
study is calculated in a sort of iterative way from the logarithmic law knowing the mean
velocity at the nearest mesh point to the wall. This is described brie�y as follows. Assuming
that y is the direction normal to the wall

�12|y=0 = ũ(x;�y; z; t)
〈ũ(x;�y; z; t)〉 〈�12〉 (13)

�|y=0 = 0 (14)

�32|y=0 = w̃(x;�y; z; t)
〈w̃(x;�y; z; t)〉 〈�32〉 (15)

where 〈 〉 denotes time mean. Equations (13) and (15) simply state that the instantaneous wall
shear stresses is in phase with the instantaneous velocity at the �rst grid point close to the
wall; Assuming that the �rst grid point next to the wall is in the log-law region, 〈ũ(x;�y; z; t)〉
satis�es the following log-law equation:

〈ũ(x;�y; z; t)〉= u�
�

[
ln

(
u��y
�

)
+ c

]
(16)

where �=0:41 is the von Karmann constant and c is another constant whose value is taken
to be 2.3; u�=

√
�12=� is the friction velocity, and the same treatment with 〈w̃(x;�y; z; t)〉.

In the simulation the wall functions are automatically switched on if y+ at the �rst mesh
point to the wall is greater than 11 otherwise a non-slip wall boundary condition is applied.
However, it is worth pointing out that to ensure accuracy y+ should be about 1 or smaller
when a non-slip wall boundary condition is used.
The two sides in the spanwise direction can be treated as solid walls or periodic boundaries

depending on the cases studied. The treatment of periodic boundary condition and the coupling
of block interfaces is very similar. Figure 1 shows the periodic boundaries and the block
interfaces, respectively.
Take u velocity as an example, the following relationship is applied:

u(1)= u(ni); u(nip1)= u(2)

It should be aware that this is valid only when the corresponding control volumes have the
same geometric dimensions.
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Figure 1. Periodic boundaries and block interfaces.

3. VALIDATION AND APPLICATIONS

Large eddy simulations of a channel �ow, �ow in a 180◦ bend square duct and in a typical
dump di�user geometry have been carried out using the numerical methods described above.
The channel �ow simulation has been carried out mainly as a validation of the code using the
numerical techniques described and the results will be compared with available measurements
by Wei and Willmarth [21] and LES results by Shah and Ferziger [22] under the same �ow
conditions. In order to test the curvilinear capability of the code a more complicated and
di�cult test case is chosen, i.e. the �ow in a 180◦ bend square duct. The current numerical
results will be compared with not only the experimental data by Chang et al. [23] but also
the LES results using a collocated grid by Breuer and Rodi [24]. The dump di�user �ow
simulation is an example of the use of these techniques in realistic practical engineering
�ow calculation, and comparison with the experimental data obtained also at Loughborough
university will be presented.

3.1. Channel �ow

The Reynolds number based on the half channel height and bulk velocity is 38 000. The
size of the computational box is 2:5� (streamwise, x), 2 (normal, y) and 1:5� (spanwise, z).
The mesh is uniform in the streamwise and spanwise direction, and stretched in the normal
direction with a grid size of 64× 82× 82 in the (x; y; z directions). The mesh is stretched in
y direction and the �ymin (�rst near wall cell) is about 1, justifying the use of a no-slip wall
boundary condition.
Simulation started with randomly disturbed initial �elds using periodic boundary conditions

in both streamwise (the mass �ow rate was imposed) and spanwise directions. It took roughly
50 000 steps to reach fully developed, statistically stationary �ow state when total turbulent
kinetic energy (spanwise averaged only) �uctuates around a certain value (not increasing
or decreasing continuously) and then samples were collected every 10 steps to obtain time-
averaged data. An ensemble of around 10 000 samples was collected to perform a rolling
average (around 100 000 time steps, corresponding to around 15 �ow-through or residence
times).
Figure 2 shows the streamwise mean velocity pro�le and it can be seen that the current

numerical results compare quite well with the LES results obtained with the Smagorinsky
subgrid scale model by Shah and Ferziger [22]. The predicted mean velocity matches the
theoretical log-law curve well in the near wall region which indicates that the mesh resolution
in the near wall region is �ne enough. Further away from the wall (y+¿200) the log-law
velocity pro�le is well captured. However, both the current LES results and the LES results
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Figure 2. Mean streamwise velocity pro�le.
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Figure 3. Mean shear stress pro�le.

by Shah and Ferziger [22] show a bulge in the region 20¡y+¡300 compared with the log-
law pro�le. This may be due to the under-prediction of the skin friction by the conventional
Smagorinsky model which causes the velocity pro�le to rise above the log-law pro�le.
The comparison between the predicted shear stress (normalized by u2�) and the experimental

data is shown in Figure 3 and as expected the predicted shear stress (resolved Reynolds stress
plus the subgrid stress) is a straight line away from the walls, indicating that the �ow is fully
developed and the average Reynolds shear-stress has attained the equilibrium shape. It also
indicates that the total averaging time is su�cient (adequate samples have been collected). In
the near wall region the viscous stress are signi�cant, and they, together with the turbulent
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Figure 5. Contours of u′ at y+ =11:3.

shear stress, balance the mean pressure gradient. The comparison with the experimental data
[21] is reasonably good despite the fact that the experimental data are a little bit scattered
when approaching the wall.
The turbulent normal stresses normalized by u� are shown in Figure 4. As can be seen

from the �gure that the peak value of the predicted normal stress u′ is about 15% larger
than the experimental data [21]. The predicted wall normal stress v′ goes down smoothly
to zero towards the wall whereas the experimental data remain �at all the way till close
wall region which seem to be unrealistic. At very close wall region there are no experimental
data since it is very di�cult, if not impossible, to take measurements in the very close wall
region. The current numerical results compare very well with the LES results obtained with
the Smagorinsky model by Shah and Ferziger [22] in the near wall region as shown in the
�gure.
It has been well established that in wall bounded turbulent �ows the high- and low-speed

streaks in the near wall region alternate in the spanwise direction. This well-known streaky
structure can be clearly seen from Figure 5 which shows the contour of u′ in the (x; z) plane
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at y+ =11:3. This indicates the resolution used in the current simulation, especially in the
spanwise dimension is good enough.

3.2. Flow in a 180◦ bend square duct

The Reynolds number based on the hydraulic diameter and the bulk mean velocity is about
56 700 and the ratio of the mean curvature to the hydraulic diameter is 3.35. More details
can be found in Reference [23]. The fully inhomogeneous �ow in such a 180◦ duct cannot
be simulated by spectral or Cartesian �nite-di�erence methods and the current curvilinear grid
consists of 121× 66× 66 mesh points, which are roughly the same mesh points as in Breuer
and Rodi’s LES simulation [24]. The computational domain includes an upstream inlet and
a downstream outlet, tangent to the 180◦ bend, of three hydraulic diameters. The precursor
method as mentioned before was used to generate the inlet conditions.
Statistics are gathered by averaging in time only as there is no homogeneous directions

after the simulation is in its fully developed, statistically stationary state. The simulation is
run for 70 000 time steps to reach the statistically stationary state, and the results presented
below are then gathered over a further 200 000 time steps (around 2s, corresponding to around
10 �ow-through or residence times) with a sample taken every 10 time steps (20 000 samples).
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Figure 6. Mean streamwise velocity pro�les at 3◦ station, solid line: LES; symbols: Exp. data.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1–18



12 G. TANG, Z. YANG AND J. J. MCGUIRK

(r -ri)/D

U
/U

b

0 0.25 0.5 0.75 1

0.8

1.2

1.6

2

2.4

2z /D=0.25

0.5

0.75

Figure 7. Mean axial velocity pro�les at 45◦ station, solid line: LES; symbols: Exp. data.

Figure 6 shows pro�les of mean streamwise velocity at �=3◦ at di�erent heights. Overall
agreement between the numerical results and the experimental data at all three di�erent heights
is good. Both the experimental data and the LES results clearly indicate that even at such an
earlier stage of �ow going inside the bend section all the pro�les are already di�erent from
the normal channel �ow situation, showing their maximum values displaced towards the inner
wall due to the favourable streamwise pressure gradient there.
The comparison between the numerical results and the experimental data at �=45◦ is shown

in Figure 7 and the overall agreement is quite good too. At the near wall plane, 2z=D=0:25
(z is the normal distance and D is the height of the square duct), the LES predictions still
show similar pro�le to that at �=3◦ station. However the experimental data indicate that
the pro�le is slightly di�erent from that at �=3◦ station, with the maximum value shifted
towards the outer wall. At 2z=D=0:5 and 0.75 the agreement is better although it seems that
the experimental data show a tiny peak towards the outer wall which the LES results fail to
capture. This could be due to the secondary motions and the current mesh resolution may not
be �ne enough to simulate it properly.
Figure 8 shows pro�les of mean streamwise velocity at �=90◦, compared with both the

experimental data and the LES results by Breuer and Rodi [24]. The agreement between the
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Figure 8. Mean axial velocity pro�les at 90◦ station, solid line: LES; symbols: Exp. data;
dashed line: LES by Breuer and Rodi.

current LES results and the experimental data is not as good as in the previous two stations.
At 2z=D=0:25 and 0.5 the experimental data indicate double peaks clearly, one near the inner
wall and the other near the outer wall, and after the peak near the inner wall there is a big
trough followed immediately. This kind of behaviour of velocity pro�les are mainly due to
the secondary motions which are possibly the strongest at this station. The current LES results
show the correct trends with two peaks predicted but under-predicted the trough. However, it
can be seen clearly that the current numerical results compare better than the LES results by
Breuer and Rodi [24]. Both simulations use roughly the same mesh points but it is hard to
draw any �rm conclusion based on only very limited comparisons.

3.3. Dump di�user �ow

As an example of the use of these techniques in practical, complex engineering geometry,
we present results from the simulation of the �ow in a typical dump di�user region of gas
turbine combustor. This �ow involves separation and reattachment which is very di�cult, if
not impossible, to predict by a conventional turbulence model.
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Figure 9. Computational domain and the mesh.

The overall geometry and meshing is shown in Figure 9. The simulations were performed
using the techniques outlined in previous sections on both a coarse mesh with 110 000 grid
points and a much �ner mesh with about 800 000 grid points. The mean �ow and turbulence
quantities are broadly similar and it has been found that in�ow boundary conditions have
a stronger in�uence on the results than the mesh re�nement so that the in�ow boundary
conditions (data) are generated here using the precursor simulation technique. The Reynolds
number based on the pre-di�user duct height is 65 000 and the results presented below are at
X14 station as shown in Figure 9.
Statistics are gathered by averaging in time and also over the span direction once the

simulation is in its fully developed, statistically stationary state. The simulation is run for
90 000 time steps to reach the statistically stationary state, and the results presented be-
low are then gathered over a further 150 000 time steps (around 0:9 s, corresponding to
around 60 �ow-through or residence times) with a sample taken every 5 time steps (30 000
samples).
Figure 10 shows contours of mean and instantaneous axial velocity which illustrate that the

instantaneous �ow �eld is very di�erent from the averaged one. In particular, large di�erences
can be observed between the instantaneous and averaged recirculation region size, with large
scale movement of the instantaneous re-attachment points as the instantaneous �ow �elds are
di�erent and changing all the time. The mean �ow �eld will not change if averaged long
enough (enough samples collected).
Figure 11 shows the predicted mean axial and transverse velocity pro�les (normalized by

the bulk velocity) compared with experiment at station X14 (location of X14 is shown in
Figure 9). The pro�les are plotted against normalized co-ordinate r starting from 0 (inner
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Figure 10. Contours of mean and instantaneous axial velocity.

wall) to 1 (outer wall). It can be seen that a good agreement of mean axial velocity has been
obtained between the LES results and the experimental data. Both the simulation and the
experiments show that a small reverse �ow region still exists at X14. However, the predicted
axial velocity pro�le by a RSM (steady axisymmetric 2D) does not capture this reverse �ow
region. The agreement of mean transverse velocity between the LES and the experiment is
also quite good while the RMS prediction is much lower compared with the experimental data.
All three turbulence rms values at the same location X14 (normalized by the bulk velocity)

are shown in Figure 12. The predicted u′; v′ by LES and the experimental data compare
reasonably well in terms of both the magnitude and the pro�le shape apart from that the
LES results show a peak near the inner wall but no experimental data available in this region
so close to the wall whereas the RSM results are only about 50% of the measured values
everywhere. The predicted w′ by LES also agrees well with the experimental data, especially
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Figure 11. Mean axial and normal velocity pro�les.

the peak value near the outer wall which the RSM failed to predict completely. The pro�le
shape predicted by the RSM is quite di�erent from the measured pro�le and the predicted
value is less than 50% of the measured value. We believe that the peak of w′ pro�le near
the outer wall is mainly due to large scale unsteady motion in this region associated with the
movement of the instantaneous reattachment points, which any turbulence models based on
RANS approach might fail to capture. Further details of the �ow physics, structures etc. will
be given elsewhere.

4. CONCLUSIONS

Numerical methods for performing large-eddy simulations using general curvilinear orthogonal
co-ordinates have been described. Several key issues in LES such as inlet �ow boundary
conditions, �ltering, choice of velocity components (cartesian or contravariant) have been
discussed. The numerical methods have been evaluated using a fully developed channel �ow
as a standard test case and an overall good agreement has been obtained between the LES
results and the experimental data for both the mean velocity and turbulence quantities. A
more di�cult �ow problem, a reasonably high Reynolds number square duct �ow with a 180◦
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Figure 12. Pro�les of u-rms, v-rms and w-rms at X14.

bend was chosen to examine the performance of the current LES methodology. The overall
agreement between the LES predictions and the experimental data is quite good. There are
some di�erences mainly at �=90◦ station and the secondary motion appears to be responsible
for the discrepancies as the mesh resolution used in the current study is not �ne enough to
capture the secondary motion accurately.
A much more complicated and realistic engineering �ow in a typical dump di�user region of

gas turbine combustor has then been simulated using the numerical techniques described. The
predicted mean velocity and turbulence quantities by LES compare well with the measured
values whereas a RSM performed badly in this complex �ow, failing to capture �ow dynamics
due to large scale unsteady motions indicated by the measurements which LES has successfully
predicted. Further detail analysis of the LES data in this case to shed light on �ow physics
and structures will be presented elsewhere.
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The LES techniques presented in the paper have been proven robust, e�cient and reli-
able after applying to three di�erent �ow cases with good results obtained compared with
experimental data.
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